

AGRIBLOSSOM

A monthly peer reviewed e-magazine for Agriculture & allied Sciences

Mutation breeding for vegetable crop improvement

Anuradha Sinha¹, Suman Lata², Pramod Kumar³ and Chandni⁴

¹Department of Horticulture (Vegetable and floriculture), Bihar Agricultural University, Sabour, Bhagalpur, Bihar ²Department of Soil Science & Agril. Chemistry, Bihar Agricultural University, Sabour, Bhagalpur, Bihar ³Zonal Research Station (Birsa Agricultural University), Chianki, Palamau-822102 ⁴Department of Agronomy, Bihar Agricultural University, Sabour, Bhagalpur, Bihar *Corresponding author: anuanjali92@yahoo.com

Introduction

Sudden heritable change in DNA sequence is known as mutation. Mutation leads to change in characteristics of an organism. 'Mutation breeding' include operation related to the mutation induction & isolation of mutants. It may induce both qualitative and quantitative variation relatively in a short period of time.

Classification of mutation

On the basis of occurrence, mutation can be classified as

Spontaneous mutation- occurs naturally without any treatment. Frquency of spontaneous mutation is very low *i.e.* 10^{-6} .

Induced mutation- it may be induced artificially by treating with some physical or chemical mutagens. Agents used for producing them termed as

mutagens. Induced mutation occurs at higher frequency then spontaneous mutation.

Based on the structural change-

Genomic mutation-Change in chromosome number (gain or loss in complete sets of chromosomes or parts of a set)

Structural mutation-Change in chromosome structure (duplications of segments, translocation of segments)

Gene mutation- nucleotide constitution of DNA is changed.

Based on the gene action

Dominant mutation- Change of a recessive allele

to a dominant allele (aA).

Recessive mutation-Change of a dominant allele to a recessive allele (Aa).

Characteristics of mutations

- Mutations are generally recessive.
- Mutations are generally harmful to the organism.
- 0.1 percent of mutation is beneficial.
- Mutations are random.
- Mutations are recurrent.
- Induced mutation commonly shows pleiotropy.

Variations in chromosome structure caused by mutation

- 1. Deletions.
- 2. Duplications.
- 3. Inversions
- 4. Translocations (moving a DNA segment).

Effect of Mutation

- 1. Lethal: Kill all the individual
- 2. **Sublethal &Subvital**: Sublethal kill more than 50% of the individuals, while sub vital kill much less than 50%.
- 3. **Vital** : Do not reduce viability of the individual carrying them

Mutagens are any agents which induces mutations.

Types of mutagens

Physical mutagen

1. **Ionising radiation:** Non-particulate: Electromagnetic, X-ray, Gama ray Particulate

AGRIBLOSSOM

A monthly peer reviewed e-magazine for Agriculture & allied Sciences

and radiation: Alpha ray, Beta ray, Fast & Thermal neutrons

2. Non- ionising radiation: U.V rays

Effect of physical mutagens in vegetable crops

Among the radiation based methods, gamma-ray and X-ray in most applications. In which gamma-ray is less destructive whereas fast neutron bombardment causes large deletions.

Table 1. Effect of gamma radiation on vegetable crops

Dose	Effect	Crop
20 kR	Mutants with different	Phaseolus
	flower colour and altered	vulgaris L. cv.
	size, shape and seed coat	Waghya
	colou	
20 kR	germinated seeds, pod	faba bean
	length and photosynthetic	
	pigment content	
400	more changes in genomic	Okra
and	DNA patter	
500 G		
450G	induce new genetic	canol
	variability in some	
	agronomic traits	

- Chemical mutagens
- 1. Alkylating agents: Sulphur mustard, nitrogen mustard, EMS, MMS
- 2. Acridinedyes : acriflavine, proflavine, acridine orange etc.
- 3. Base analogues: 5-bromouracil, 5 chlorouracil
- 4. **Others:** Nitrous acid, hydroxyl amine, sodium azide

Table 2. Additive effect of physical and chemicalmutagens

Crop	Effect	Mutagens	Reference
Cowpea	Chromosome	gamma	Kumar
	aberrations like	rays and	and
	unorientations,	sodium	Verma
	multivalent,	azid	(2011)

	laggards,		
	bridges and		
	precocious		
	movements etc.		
	were noticed in		
	mutagen		
	treated		
	population.		
Okra	Deleterious	Higher	Solanki et
seed	effects on seed	doses of	al. (2011)
	germination,	EMS	
	plant survival,	(10%) and	
	seedling height	gamma	
	and pollen and	ray (60kR)	
	ovule fertility.		

Commercial utilisation of morphological mutants in vegetable crops

- Dwarf mutants
- Leaf mutants
- Flower mutants
- Mutants for earliness
- High yielding mutants
- Male sterile mutants
- Mutants with changed quality traits
- Mutant with changed post-harvest life
- Mutants released as new varieties.

Table 3. Mutant varieties in Vegetables

Crop	Variety	Mutant type	
Tomato	S-12,	X-ray mutant of Sioux,	
	Maruthan (Co-	mutant of Co-1,	
	3), PKM-1,	Mutant of Annagi,	
	Pusa Lal	Gamma ray mutant of	
	Meeruti	Meeruti	
Chilli	MDU-1	Gamma ray of mutant	
		of K-1	
French	Pusa Parvati	X-ray mutant of Wax	
bean		pod	
Hyacinth	Co-1	Gamma ray mutant of	
bean		Co-6	

A monthly peer reviewed e-magazine for Agriculture & allied Sciences

Bitter	MDU-1	Gamma ray mutant of	
gourd		MC-103	
Palak	Jobnee Green	A spontaneous mutant	
		from local cv.	

Limitation of mutation breeding

- The frequency of desirable mutation is very low about 0.1 % of total mutations.
- the breeders has to screen large population to select a desirable mutations
- Desirable mutations are commonly associated with undesirable side effect due to other mutation, chromosomal aberrations.
- Often mutation produces pleiotropic effects
- There may be problems in their registration of mutant variety.
- most of the mutations are recessive

Conclusions

Mutations have the ability to increase the rate of domestication of many vegetable crops that may be potentially useful as a source of food, forage and industrial raw materials. Mutations used in the field of plant molecular biology which are actually of imperative use in breeding studies.

References

Kumar G, Verma S. Comparative effect of individual and sequential treatment of gamma rays and sodium azide in Vigna unguiculata. Chromosome Botany. 2011; 6:33-36.

Solanki RK, Gill RK, Verma P, Singh S. Mutation breeding in pulses: an overview. In: Khan S, Kozgar MI (eds). Breeding of pulse crops. Kalyani Publishers, Ludhiana, 2011, pp.85-103.